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1. Introduction

Recently, there has been considerable progress in understanding the vacuum structure of

Witten’s cubic string field theory [1] following Schnabl’s construction of an exact solution

of the equations of motion representing the open-string tachyon vacuum [2]. Using this

solution, it is possible to show that the tachyon vacuum has the correct energy [2 – 4] and

the expected lack of physical states [5],1 proving analytically what had only been known

from numerical studies [7 – 13, 6].

Adding to this OSFT revival is the construction of an exact solution representing the

dynamical rolling of the tachyon from the perturbative vacuum to the tachyon vacuum [14,

15]. Although we will focus on the bosonic case, a rolling-tachyon solution has also been

constructed for Berkovits’ supersymmetric open string field theory [16 – 18] in [19 – 21]. See

also [22] for another approach to marginal deformations.

Rolling-tachyon solutions in string field theory have long been somewhat mysterious.

Numerical attempts to construct such solutions in OSFT using Feynman-Siegel gauge [23],

as well as in p-adic string theory [24, 25], and in vacuum string field theory [26, 27] give

the unexpected result that the tachyon does not roll to its value at the tachyon vacuum,

but instead begins to oscillate wildly. Perhaps not surprisingly, a similar story holds for

the new analytic solutions, as shown in [14, 15]. While it is true that even for the exact

solutions the computation of the tachyon coefficient is only numerical, it seems unlikely

that an analytic result would eliminate this unwanted behavior.

We thus have a puzzle: How do we reconcile the strange behavior of the rolling-tachyon

solution with our intuition that the rolling tachyon should take us from the perturbative

vacuum to the tachyon vacuum?

1It is worth pointing out that the analytic proof of vanishing cohomology of the BRST operator in [5]

has yet to be reconciled with the numerical evidence (in a different gauge) of states in the cohomology at

non-standard ghostnumber [6].
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One answer to this puzzle is that, although the OSFT solutions do limit to the tachyon

vacuum, the wild oscillations are not physical, but due to a complicated time-dependent

gauge transformation. Indeed, in [23] it was argued that, using such a gauge transforma-

tion, one can reduce the time-dependence of the tachyon to simply eX0

, reproducing the

boundary conformal field theory (BCFT) description [28 – 31]. As one of the simple results

of this paper, we will prove this result analytically, showing that the rolling solutions are,

in some sense, no more or less complicated that the BCFT deformation.

This resolution of the puzzle, however, is not particularly satisfying. One of the beau-

tiful features of OSFT is that the tachyon vacuum is not a singular field configuration

at the boundary of field space as it is in BCFT. It is this finiteness that allows one, for

example, to have control over the spectrum of states at the tachyon vacuum, something

which is relatively difficult to see in the BCFT perspective.

This resolution is also somewhat at odds with the fact that both the rolling solution

and the tachyon vacuum are in the same gauge. It is true that the relevant gauge, B0-gauge,

is not a perfect gauge,2 but, nonetheless, it greatly restricts the possible gauge transfor-

mations. This suggests another resolution to the puzzle: the rolling-tachyon solution does

limit to the tachyon vacuum in spite of all the the numerical evidence to the contrary.3

It is the main objective of this paper to give evidence for this resolution. Indeed we

will show how one can find the Schnabl solution by taking the X0 → ∞ limit of the rolling

solution using some simplifying assumptions. Our derivation will be subject to two caveats:

1. Unlike in the numerical computations of the tachyon vev, we will will work in the

coordinate system z = f(w) = 2
π

arctan(w). We will, thus, think of quantities as

being expanded in a basis of L0 = f−1 ◦ L0 eigenstates rather than L0 eigenstates.

The transformation between these two descriptions is quite non-trivial and introduces

many potential divergences. We suspect that these may play a role in explaining the

apparent inconsistency between our results and the numerical results.

2. An exact computation of the time-dependence of the rolling solution in L0-basis does

not appear to be much easier than in L0-basis. As such, we make an assumption about

the late-time behavior of the matter correlators, which simplifies the computation

enough that we can find analytic expressions. This assumption is specified in (3.2).

We consider the fact that using this simple assumption leads to Schnabl’s solution as

a hint that it is probably true.

Having argued that the late-time limit is just the tachyon vacuum, the reader may

wonder how the energy of the original brane could possibly be conserved. Indeed, in a

standard classical system, this would be impossible for the following reason: Suppose we

2Indeed, one can check that, around the perturbative vacuum, there is one exact state in L0 level

truncation which preserves the gauge; B0QB(L0 + L⋆
0)c1|0〉 = 0 [2]. Finding a good gauge in OSFT seems

to be a difficult problem. There is also numerical evidence that even Feynman-Siegel gauge is not a good

gauge globally [32].
3A third possibility is, of course, that the rolling solution does not limit to the tachyon vacuum at all,

even up to a gauge transformation, but we will not consider this possibility.
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have a time-dependent configuration which at late-times limits to a static configuration.

Since, at late-times, the time-dependent solution becomes approximately constant, the

kinetic energy must go to zero. Hence all of the energy will come from the potential

energy, which should be the same as for the static solution.

OSFT violates two assumptions in this argument. First, as OSFT has an infinite

number of time-derivatives, it is possible for the kinetic energy to remain finite even as

the solution becomes constant. Second, the potential of OSFT is not smooth. In the

argument above, we assumed that if two configurations were very close to each other, they

would have the same potential energy. However, in OSFT, we can find solutions which are

arbitrarily close to each other in the Fock-space expansion yet have different energies, as is

demonstrated by the remarkable fact that the tachyon-vacuum solution is actually a limit

of pure-gauge solutions [2, 3].

This pathology is related to the lack of a proper norm on the free-string Fock-space

that we are using for our classical field space. Without such a norm, we cannot give a

rigorous definition of when two states are close to each other. The best we can do is see

if the coefficients of two states in the level-expansion are near each other. This definition

is not independent of which basis we use, however, and any statement we are making

about the late-time limit of the rolling tachyon should be understood to be subject to this

important subtlety.

The organization of this paper is as follows: In section 2, we review Schnabl’s exact

expression for the tachyon vacuum and the rolling-tachyon solution. Then, in section 3,

we argue that the late-time limit of the rolling-tachyon solution is given by the tachyon-

vacuum solution. Finally, in section 4, we show how the rolling-tachyon solution is related

to the BCFT deformation, J = eX0

.

2. The tachyon-vacuum and rolling-tachyon solutions

We begin with a short review of the tachyon-vacuum and rolling-tachyon solutions.4 Read-

ers unfamiliar with this material should consult [2, 14, 15]. It is convenient to define string

field theory states not on the upper half plane, as is standard in ordinary CFT, but, in-

stead, on the semi-infinite cylinder Cr, which is defined as follows: one takes the region of

the UHP −r/2 ≤ ℜ(z) ≤ r/2 and glues the line ℜ(z) = −r/2 to the line ℜ(z) = r/2. To

define correlation functions on Cα, one uses that

z = fr(w) =
r

π
arctan(w) (2.1)

maps the UHP to the cylinder Cr. For convenience, we define f(w) = f2(w) = 2
π

arctan(z).

4We warn the reader that there are a number of different conventions for defining states in the cylinder

coordinate system. We follow the convention in which the left half of an operator acts as OL(ψ1 ∗ ψ2) =

(OLψ1) ∗ ψ2. However, when we display our states graphically, as in figure 2, the left half of the string

is on the right half of the shaded region. We are also including an extra factor of 2

π
in our conformal

map [3, 33, 15], which is why we do not have the factors of π present in the diagrams of [2]. When we refer

to operators such as L0 and B0, we define them as pull-backs of the non-curly versions: L0 = f−1 ◦ L0.

This definition coincides with the one in [2], since the extra numerical factors cancel.
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Figure 1: Here we illustrate how we can define a state |χ〉 in the cylinder coordinates. We begin

by mapping the state |ϕ〉 into the cylinder geometry using f(w) = 2

π
arctan(w). We then insert the

some local operators, Oi, and compute the correlator on the cylinder. The resulting amplitude is

defined to be 〈ϕ|χ〉 for some state |χ〉.

We can define states in this coordinate system through their inner products with

arbitrary states, ϕ. For example, we might define a state χ through

〈ϕ|χ〉 = 〈f ◦ ϕ(0)O1(z1) . . .On(zn)〉Cr+1
, (2.2)

where the Oi are a set of local operators inserted in Cr. In order for χ to be a well-defined

state, we should insist that none of the zi are in the region −1/2 ≤ ℜ(z) ≤ 1/2, which is

the image of the unit disk under f(w) and is known as the coordinate patch. A state |χ〉

defined through (2.2) is said to be a wedge state (of width r) with insertions [34, 35]. See

figure 1.

As we defined things in (2.2), the coordinate patch is in the middle of the cylinder.

Since we are more interested in the part of Cr+1 that is not contained in the coordinate

patch (i.e. the shaded region in figure 1), we will rotate the cylinder, z → z + r+1
2 , so that

half of the coordinate patch is on right side of Cr+1 and half is on the left, while the shaded

region is in the middle. We denote the map of ϕ into the translated coordinate patch by f̃ .

In addition to inserting local operators on the cylinder, we also need to insert contour

integrals of operators. In particular, we will use5

B =

∫

γ

dz b(z) , (2.3)

where γ is the contour ℜ(z) = constant, and the direction of integration is upward. Since

the contour can be freely pushed to the left or right unless it crosses some other operator,

we need only to specify that the contour lies between the neighboring operators in a given

expression.

To define the tachyon vacuum, we define the states |ψn〉 by

〈ϕ|ψn〉 =

〈
f̃ ◦ ϕ(0) c

(
n

2

)
B c

(
−

n

2

)〉

Cn+2

. (2.4)

5This operator is denoted BL
1 in [2].
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c

− r
2− r+1

2

c

r
2

r+1
2

b

f̃ ◦ ϕ

Figure 2: The geometric definition of the states |ψn〉.

cJ J J J J cJ

b

f̃ ◦ ϕ

Figure 3: The geometric definition of the states |θn〉. The distance between the J ’s is integrated

from 0 to 1. For convenience, we have also used the fact that B2 = 0 to reduce the number of b

contours to just one, while removing all but two of the c’s.

This state is pictured in figure 2. The tachyon vacuum is given by

Ψ = lim
N→∞

(

ψN −

N∑

n=0

∂nψn

)

. (2.5)

The rolling solution is a bit more complicated to define in this notation, although

geometrically it is just as elegant. We start with our weight one primary J = eX0

. We

then define the variables,

ti =
1

2

i−1∑

j=1

wj −
1

2

n−1∑

j=i

wj , r(wi) = 2 +

n−1∑

i=1

wi , (2.6)

and the states |θn〉 by

〈ϕ|θn〉 = (−1)n+1

∫ 1

0

( n−1∏

i=1

dwi

)〈
f̃ ◦ ϕ(0) cJ(tn)B cJ(tn−1)B . . . B cJ(t1)

〉
. (2.7)

These states are picture in figure 3.

The marginal solution is then given by

Θ =

∞∑

n=1

λnθn . (2.8)
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As is easy to check, the marginal parameter λ can be rescaled by a translation of X0. The

only thing one cannot change in this way is the sign of λ which must be positive for the

solution to roll towards the tachyon vacuum. From now on we will simply set λ = 1.

3. The late-time limit of the rolling-tachyon solution

Having defined the relevant fields, we now argue that, at late times, the rolling-tachyon

solution limits to tachyon vacuum. As is evident from the expression for Θ given in (2.7)

and (2.8), a direct attempt to take the limit X0 → ∞ would be very difficult. Indeed, it is

not even obvious that such a limit exists.

However, as we will now show, one finds very nice results if one assumes that a limit

exists. In detail, suppose we take the all of the contributions from Θ that have a width r+1

and sum them up to give a state Wr. For such a state, the ghost insertions are fixed and

one integrates over various possible insertions of eX0(σ). Summing up all the possibilities

yields some (very complicated) functional Fr[X
0(σ)] and we can write

〈ϕ|Wr〉 =
〈
f̃ ◦ ϕ c(r/2)B Fr[X

0(σ)] c(−r/2)
〉

Cr+2

. (3.1)

We then make the following

assumption: lim
x0→∞

Fr[X
0(σ) + x0] = g(r) , (3.2)

where g(r) is some yet to be determined function. Note that this assumption is stronger

than the assumption that there exists a limit. We are also assuming that the limit does

not depend on operators like ∂X0(σ). The power of this assumption is that it implies that

if we are only interested in late-time questions, we can replace all of the explicit X0(σ)’s

by the zero mode x0, which is just a constant and not a field.

Replacing X0(σ) → x0 in (3.1) gives

〈ϕ|Wr〉 = Fr[x
0(σ)]

〈
f̃ ◦ ϕ c(r/2)B c(−r/2)

〉

Cr+2

, (3.3)

which reveals that

|Wr〉 = Fr[x
0(σ)]ψr . (3.4)

Now Fr[x
0] is given by the sum over n of the integral over all possible ways of dividing an

interval of width r into n intervals with width ≤ 1 multiplied by (−1)ne(n+1)X0

. Explicitly,

Fr[x
0] =

∞∑

n=0

(−1)ne(n+1)x0

( n∏

j=1

∫ 1

0
dwj

)
δ(

∑
wj − r) . (3.5)

To evaluate this sum, we Fourier-transform the delta-function,

Fr[x
0] =

1

2π

∫ ∞

−∞

dy

∞∑

n=0

(−1)ne(n+1)x0

( n∏

j=1

∫ 1

0
dwj

)
exp(iy(

∑
wj − r))

=
1

2π

∫ ∞

−∞

dy
∞∑

n=0

(−1)ne(n+1)x0

e−iry

(
1

iy
(eiy − 1)

)n

. (3.6)
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Performing the sum over n yields

Fr[x
0] =

1

2π

∫ ∞

−∞

dy
ex0

e−iry

1 + 1
iy

(eiy − 1)ex0
. (3.7)

We can now take the large x0 limit to find

g(r) = lim
x0→∞

Fr[x
0] =

∫ ∞

−∞

dy
(−iy) e−iyr

1 − eiy
= ∂r

∫ ∞

−∞

dy
e−iyr

1 − eiy
, (3.8)

which reduces to

g(r) =

∞∑

n=0

δ′(r − n) . (3.9)

Since, by definition,

lim
x0→∞

Θ
∣∣∣
X0=x0

= lim
x0→∞

∫ ∞

0
dr Wr

∣∣∣
X0=x0

=

∫ ∞

0
g(r)ψr , (3.10)

we learn that

lim
x0→∞

Θ
∣∣∣
X0=x0

=

∫ ∞

0
dr

∞∑

n=0

δ′(r − n)ψr , (3.11)

so that

lim
x0→∞

Θ
∣∣∣
X0=x0

= −
∞∑

n=0

∂nψn = Ψ , (3.12)

reproducing the tachyon-vacuum solution. Although this gives a formal proof that the

tachyon vacuum appears in the limit, the reader may wonder whether the extra piece ψN

in (2.5) is being correctly accounted for. To assure the reader, we note that we can also

perform the limit directly in L0-level expansion. One can verify, for example, that, after

replacing X0 → x0, the rolling-tachyon solution takes the form,

Θ
∣∣∣
X0=x0

=
ex0

1 + π
2 ex0

c1|0〉 + higher L0-level . (3.13)

Taking x0 → ∞ gives 2
π
c1|0〉 for the lowest level term, reproducing the result of [2].

As a final note, we would like to address the following concern, which might make the

reader believe that this result is actually trivial: Since the rolling-tachyon solution is in

B0-gauge and reducing X0 to its zero mode preserves this condition, it might seem that

finding the tachyon vacuum is inevitable, as there is only one such universal solution. The

problem with this argument is that, after we replace X0 by its zero mode, we no longer

have a solution to the equations of motion. It is quite remarkable if our assumption (3.2) is

wrong that taking the limit x0 → ∞ would yield both a finite state and a classical solution.

4. The rolling tachyon and BCFT

Having argued that the tachyon-vacuum solution arises as a limit of the rolling-tachyon

solution, we would now like to point out the simple relationship between the rolling-tachyon

– 7 –
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solution in OSFT and the boundary deformation J = eX0

in BCFT.6 The use of identity

states and their relation to deformations of the boundary CFT is similar to [42].

Recall that in boundary conformal field theory, one can deform the boundary conditions

of the theory by a true marginal operator V by adding a boundary term to the worldsheet

action,

S(X, b, c) → S +

∫
dσV(σ) , (4.1)

where the integral is performed along the boundary of the world sheet. This implies that

a correlator on the UHP in the deformed theory can be related to a correlator in the

undeformed theory by

〈O1(z1) . . .On(zn)〉V = 〈O1(z1) . . .On(zn)e
R

dσV(σ)〉 . (4.2)

Ordinarily, this is not enough to define the deformed theory since the right hand side

will have various divergences when the V collide with each other. Conveniently, for the

rolling-tachyon deformation, V = J , no counterterms are necessary since

J(σ1)J(σ2) = (σ1 − σ2)
2 : J(σ1)J(σ2) : . (4.3)

Let us now compare this BCFT description with the OSFT description. In OSFT, one

does not change the underlying CFT, but, instead shifts the vacuum Ψ → Ψ + Θ, where Θ

was given in (2.8). If one also constructs the string field theory around the deformed CFT,

which we can call OSFTJ , then there is some complicated field-redefinition which takes

one from the undeformed theory with a shifted vacuum, OSFTΘ, to the theory OSFTJ in

which the CFT is deformed.

What is remarkable about the rolling-tachyon solution is that this field-redefinition is

actually a finite gauge transformation. To see how this works, consider the following string

field, Θ0, defined through the relation,

〈ϕ|Θ0〉 =
〈
f̃ ◦ ϕ(0) cJ(0)

〉

C1

. (4.4)

This is just the identity string field with an insertion of cJ on the boundary;7

Θ0 = U⋆
1 U1cJ(0)|0〉 . (4.5)

This state satisfies the OSFT equations of motion in a trivial way since

QBΘ0 = Θ0 ∗ Θ0 = 0 . (4.6)

Consider the theory OSFTΘ0
defined by shifting the vacuum Ψ → Ψ + Θ0. This theory

differs from the old theory only in a correction to the kinetic term,

S(Ψ + Θ0) = S(Ψ) +
1

2

∫
Ψ ∗ [Θ,Ψ] + Constant , (4.7)

6For a general theory relating boundary deformations to SFT solutions see [36 – 40]. See also [41] for a

general discussion of boundary deformations.
7See [34, 2] for the definition of the Ur operators. We are using ⋆ to denote BPZ conjugation as in [43].
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cJ

b

b b

T

a)

b)

T1 T2

Figure 4: In a), the standard Feynman-Siegel gauge propagator is shown. The modulus T is

integrated from zero to infinity. In b) the first correction to the propagator from the field Θ0 is

shown. Note that there are now two integrals over b. Pulling the right one to the left, one can

eliminate the c on the boundary leaving just J . The two moduli, T1 and T2 are integrated over

which should be thought of as integrating over the total length of the propagator and the position

of the operator J on the boundary.

which changes the propagator.

In Feynman-Siegel gauge, the propagator is just a strip of worldsheet with one insertion

of a line integral of b as shown in figure 4a. To account for the correction to the propagator

from the modified kinetic term in (4.7), we must include the additional diagrams in which

the field Θ0 is inserted into the propagator using the cubic vertex. However, since Θ0 is

just an identity field with an operator inserted on its boundary, the modified propagator

is just the old propagator with insertions of cJ on the boundary and a contour integral

of b(z) between each pair of cJ ’s. This is illustrated in figure 4b. By pulling the contour

integrals of b to the left we can remove all of the insertions of c (with one integral of b left

over).

After these manipulations, the final propagator is given by the original propagator

with an insertion of exp(
∫

dσJ(σ)), which is just the modification of the boundary CFT

described in (4.2). It follows that any correlator in OSFTΘ0
is identical to the same

correlator computed in OSFTJ , so that the two theories are the same.

What remains to be shown is that the two states, Θ and Θ0, are related by a gauge

transformation. We do this by creating a family of solutions Θw that interpolates between

Θ0 and Θ = Θ1 such that w is a gauge degree of freedom.

The states Θw are simply the reparametrizations of the state Θ discussed in [33, 44].

One forms them by the following procedure: If a state |χ〉 is defined by a correlator,

〈ϕ|χ〉 = 〈f̃ ◦ ϕ(0) O1(z1) . . .On(zn)〉Cr+1
, (4.8)

– 9 –
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one can define a new state χw by removing the coordinate patch from Cr+1 (leaving a

vertical strip of width r), shrinking the remaining vertical strip using z → wz (so that

the strip is now of width rw) and then gluing back in the coordinate patch. This yields a

correlator on C1+rw which, in turn, defines a state |χw〉.

The explicit operator form of this procedure is determined by the identity,

e
β

2
(L

0
−L⋆

0
)χw = χeβw . (4.9)

When two states are related by a reparametrization, they are also related by a gauge

transformation. This immediately implies that all of the χn for n > 0 are related by finite

gauge transformations. However, χ0 can only be reached by an infinite reparametrization,

taking β → −∞. Happily, it turns out that for the rolling-tachyon solution, there is a

different gauge transformation that remains completely finite even as w → 0.

First, however, we should show that Θw at w = 0 is the state Θ0 that we defined

in (4.4). This is seen by noting that, as we take w → 0, the regions of integration in the

θn (defined in (2.7)) shrink to zero size, so that the only term that survives in this limit is

|θ1〉, which is given by

〈ϕ|θ1〉 = 〈f̃ ◦ ϕ cJ(0)〉C2
. (4.10)

Since the operator cJ is a conformal primary of weight zero, it is not affected by the

rescaling z → wz, which thus has the effect of reducing C2 → C1 as w → 0 so that we

recover (4.4). Hence we find that the string field Θ0 introduced in (4.4) is indeed what we

get when we use the reparametrization Θ → Θw as w → 0.

We now wish to show that the Θw are all gauge equivalent under finite gauge trans-

formations, including the case w = 0. We show this using the following identity, which is

straightforward to prove (see appendix A):

−2 ∂wΘw = QB(B̂Θw) + [Θw, B̂Θw] , (4.11)

where B̂ = B0 + B⋆
0 [34, 2]. The right had side should be recognized as an infinitesimal

gauge transformation with gauge parameter Λ = B̂Θw. Since B̂Θw is finite as w → 0, (4.11)

gives a finite gauge transformation relating Θ0 to Θw for any w. Indeed, if we want, we

can integrate these infinitesimal gauge transformations using8

eΛ(w) ≡ P exp

(
−

1

2

∫ w

0
dw′ B̂Θw′

)
, (4.12)

where the P indicates path ordering; when expanding out the exponential we should always

push Θw’s with larger w to the right. We then have the expression,

Θw = e−Λ(w)(Θ0 + QB)eΛ(w) , (4.13)

which relates the rolling-tachyon solution to the trivial solution (4.4) by a finite gauge

transformation.

8Such a path ordered exponential of string fields has also appeared recently in [21].

– 10 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
8

O O

Figure 5: The appearance of the propagator with insertions of a field with small, but finite,

width.

We close with a few heuristic remarks about the relation between OSFT and BCFT.

In relating the rolling-tachyon solution to the BCFT deformation, we used the fact that for

the solution (4.4), the propagator of the theory was modified in precisely the same way as if

we had turned on a boundary deformation. What happens if we repeat the same argument

for the finite-width states, Θw? Instead of local-operator insertions on the boundary of the

propagator, one inserts pieces of worldsheet as illustrated in figure 5. These extra pieces

of worldsheet act as a cutoff; even when two insertions of Θw collide, the local operators

inside one Θw never get closer than a distance ∼ w to the operators inside another. This is

a very special choice of cutoff that preservers BRST invariance. Indeed, it is easy to check

that the condition for BRST invariance is just QBΘw + Θw ∗ Θw = 0, which reproduces

the classical equations of motion.

Since w acts as a cutoff on the distance between the local operators on the boundary,

we can think of equations like (4.11) as being analogous to a β-function for the theory since

they tell us how the parameters of the theory flow as we change the scale of the theory.

Moreover, we can think of the identity limit as being analogous to the infrared and the

large wedge-angle limit as being the UV. In the deep infrared, the string field reduces to

a local operator on the boundary of the identity and we find a BCFT-like deformation.

Typically, much of the information about the full string field is lost in this limit so it is

not usually possible to reconstruct the full string field from a knowledge of the BCFT it is

associated with by using an equation like (4.11). However, the case of the rolling-tachyon

field is special since the operators involved have a finite OPE. Because of this, knowing

the BCFT description is enough to reconstruct the full string field by “flowing to the UV”

using (4.11).
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A. Proof of the identity (4.11)

We wish to show

−2∂wΘw = QB(B̂Θw) + [Θw, B̂] . (A.1)

We are given the reparametrization identity,

Θeβ = e
β

2
(L0−L⋆

0)Θ , (A.2)

which yields

∂wΘ =
1

2w
(L0 − L⋆

0)Θw . (A.3)

We are also given the analogue of B0-gauge for Θw:

[
1

2
(B0 − B⋆

0) +
w

2
B̂

]
Θw = 0 . (A.4)

Acting on this equation with QB, we learn that

1

2
(L0 − L⋆

0)Θw +
w

2
QB(B̂Θw) +

1

2
(B0 − B⋆

0)(Θw ∗ Θw) = 0 . (A.5)

Using the fact that (B0−B⋆
0) is derivation of the star algebra [35, 2], as well as (A.4) again,

we learn
1

2
(L0 − L⋆

0)Θw = −
w

2
QB(B̂Θw) −

w

2
[Θw, B̂Θw] . (A.6)

Using (A.6) in (A.3) yields (A.1). It follows that (A.1) holds for all reparametrizations of

solutions in B0-gauge.
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